How Many Atp Are Produced In Citric Acid Cycle?

The citric acid cycle produces 1 ATP directly.

ATP is the main energy currency in cells, and it is produced in many different ways. One of the most important ways is through the citric acid cycle, which is a key part of cellular respiration.

The citric acid cycle starts with acetyl-CoA, which is derived from the breakdown of glucose and other nutrients. Acetyl-CoA then enters the cycle and is converted into a variety of different molecules, including ATP. The cycle then repeats, producing more ATP each time.

In total, the citric acid cycle produces 12 molecules of ATP for every molecule of acetyl-CoA that enters the cycle. This means that it can produce a lot of ATP, especially when there are many molecules of acetyl-CoA available.

How Many ATP Are Produced In The Citric Acid Cycle Per Glucose Molecule?

Eight ATP are produced in the citric acid cycle per glucose molecule.

How Many ATP Are Produced In The Citric Acid Cycle Per Glucose Molecule?


The citric acid cycle is a series of reactions in which acetate is converted to carbon dioxide and water. The cycle begins with the formation of acetyl-CoA from glucose. This reaction is catalyzed by the enzyme pyruvate dehydrogenase. Acetyl-CoA then enters the citric acid cycle.

The citric acid cycle consists of eight reactions. These reactions can be divided into three groups:

1. The first group of reactions (reactions 1-3) involve the formation of citrate from acetyl-CoA.

2. The second group of reactions (reactions 4-6) involve the oxidation of citrate to isocitrate.

3. The third group of reactions (reactions 7-8) involve the formation of carbon dioxide and water from isocitrate.

The first group of reactions (reactions 1-3) are irreversible. The second and third groups of reactions (reactions 4-6 and reactions 7-8) are reversible.

Reaction 1: Acetyl-CoA + Oxaloacetate → Citrate

Reaction 2: Citrate + ATP → Isocitrate + ADP

Reaction 3: Isocitrate + NAD+ → α-Ketoglutarate + NADH + H+

Reaction 4: α-Ketoglutarate + NADH + H+ → Succinyl-CoA + NAD+

Reaction 5: Succinyl-CoA + GDP → Succinate + GTP

Reaction 6: Succinate + FAD → Fumarate + FADH2

Reaction 7: Fumarate + H2O → Malate

Reaction 8: Malate → Oxaloacetate + NADH + H+

The first group of reactions (reactions 1-3) produces one molecule of citrate. The second group of reactions (reactions 4-6) produces one molecule of α-ketoglutarate and one molecule of succinate. The third group of reactions (reactions 7-8) produces one molecule of oxaloacetate.

The overall reaction of the citric acid cycle is:

Glucose + 2NAD+ + 2ADP + 2P i → 2NADH + 2H+ + 2ATP + 2CO 2 + 4H 2 O

The citric acid cycle produces two molecules of ATP per glucose molecule.

How Many ATP Are Produced In The Citric Acid Cycle Per Acetyl CoA Molecule?

2 ATP are produced in the citric acid cycle per acetyl CoA molecule.

ATP is produced in the citric acid cycle in a 1:1 ratio with the number of acetyl CoA molecules. So, for every acetyl CoA molecule that enters the citric acid cycle, one ATP is produced. This ATP is then used to power the reactions of the citric acid cycle and to synthesize new molecules, including more ATP.

FAQ

How Many ATP Are Produced In The Citric Acid Cycle Per Cycle?

The citric acid cycle produces 1 ATP per cycle.

How Many ATP Are Produced In The Citric Acid Cycle Per Oxygen Molecule?

The citric acid cycle produces 1 ATP per oxygen molecule.

If you still have any questions about how many ATP are produced in the citric acid cycle, feel free to leave a comment below.

Author

  • Yahiya Raihan

    I am a fitness enthusiast and blogger. I have been working out for years and love to stay fit. I also enjoy writing about my workouts and helping others to stay motivated. I have a strong interest in health and fitness, and I love to share my knowledge with others. I am always looking for new ways to improve my own fitness level, as well as help others reach their fitness goals.

Similar Posts